Supersonic passenger planes now. Supersonic aircraft - history of development. Passenger supersonic aircraft

At OKB im. A.N. Tupolev, development is underway on a second-generation supersonic passenger aircraft (SPS), which has been given the name Tu-244.

Work on SPS-2 was and is being carried out at the A.N. Design Bureau. Tupolev for 30 years. Over the years, several different Tu-244 designs were prepared (Tu-244-400, Tu-244A-200, Tu-244B-200 and others), differing in aerodynamic layout, specific design solutions for the airframe, power plant and flight performance data .

The chief designer on the SPS-2 theme is A.L. Pukhov, technical supervision of work on the Tu-244 is provided by M.I. Kazakov.

The Tu-244 aircraft embodies the “tailless” design, with the absence of horizontal tail, the aircraft will have four turbojet engines, placed one at a time in separate engine nacelles.

The layout of the Tu-244 is aimed at ensuring high aerodynamic quality both at supersonic cruising and at takeoff and landing modes to reduce noise levels, as well as creating increased comfort for passengers.

The wing of the Tu-244 is trapezoidal in plan with an influx, has a complex deformation of the middle surface and a variable profile along the span.

The wing contains fuel caisson tanks and niches for cleaning the main landing gear.

The fuselage consists of a pressurized cabin, nose and tail compartments. The choice of the optimal fuselage diameter depends on passenger capacity. For a number of passengers of 250-320, the optimal fuselage is 3.9 m wide and 4.1 m high.

The plane does not have a fixed nose, like the Tu-144. There is no ordinary cockpit “canopy” either. The glazing of the cockpit provides the necessary visibility during flight, and during takeoff, landing and movement on the ground, the required visibility of the runway is ensured by an optical-electronic vision system that operates in all weather conditions.

The landing gear consists of a front strut and three main ones, of which the outer ones have three-axle bogies and are retracted into the wing, and the middle strut has a two-axle bogie and is retracted into the fuselage. The prototype of the nose support is the strut of the Tu-144 aircraft.

The SPS-2 Tu-244 project has been worked out quite deeply and, in principle, can be implemented. But we need money, and a lot of it.

BASIC DATA OF THE TU-244A-200 AIRCRAFT

Take-off weight, kg 325,000

Empty weight of the aircraft, kg 172,000

Fuel mass, kg 160,000

Passenger capacity, persons 268

Cruising speed, km/h M=2 Flight altitude, m 18,000-20,000

Flight range, km 9200

Aircraft length, m 88

Aircraft height, m ​​15

Wingspan, m 45

Wing area, m2 965

Fuselage diameter, m 3.9

Required runway length, m 3000

Supersonic aviation will find its place on passenger routes. Supersonic aircraft of the new generation will already differ significantly from their older brothers (Tu-144, Concorde) in speed, altitude, design, and materials.

The birth of a passenger “supersonic” aircraft that meets all modern international standards and norms is not only a structurally complex task, but also a very expensive one.

March 17, 1996 at the flight test base of the Design Bureau named after. A.N. Tupolev in Zhukovsky a ceremonial rollout of the modified Tu-144LL took place. And on November 29, 1996, the first flight of the Tu-144LL took place. It was lifted into the sky by the leading test pilot, chief pilot of the Tupolev company S.G. Borisov and co-pilot, Hero of the Soviet Union, Honored Test Pilot of the USSR B.I. Veremey.

Russia’s significant contribution to the development of SPS-2 was the creation of the Tu-144 LL “Moscow” flying laboratory on the basis of the serial Tu-144D. Work on the Tu-144LL was carried out within the framework of international cooperation with the United States, with active funding from the Americans. For conversion into a flying laboratory, a serial Tu-144D was chosen, on which the RD-36-51A engines were replaced with NK-321 engines (modifications of the NK-32 of the Tu-160 strategic supersonic bomber). Maximum takeoff thrust - 4x21,000 kg. New engine nacelles with modified air intakes were installed on the aircraft, the wing was strengthened, the fuel and other systems were modified, and installed on board a large number of control and recording equipment.

According to the program, it was planned to carry out two ground and six flight experiments on the supersonic Tu-144LL. A total of 32 flights and all on Russian territory.

After completing the planned research program as part of the creation of the second-generation supersonic passenger aircraft Tu-244, the Tu-144LL aircraft turned out to be unclaimed, and in 2001 it was sold through an Internet auction to an anonymous resident of Texas (USA) for $11 million. This is not the first time that the Tu-144 has been sold abroad. In October 2000, a German museum bought one such aircraft for half a million dollars.

BASIC DATA OF THE TU-144LL AIRCRAFT

Take-off weight, kg 20 700

Empty weight of the aircraft, kg 96,810

Flight range, km 6500

Flight altitude, m 18,800

Cruising speed, km/h M = 2

Maximum speed, km/h M = 2.37

Lift-off speed, km/h 370

Approach speed, km/h 280

Fuel capacity, kg 102,000

Crew (in experimental version), people. 7

Aircraft length, m 65.7

Wingspan, m 28.9

Wing area, m2 507

Aircraft height, m ​​12.6

Run length, m 2225

Run length, m 1310

In the second half of the 90s at the OKB im. A.N. Tupolev on his own initiative, chief designer of SPS (supersonic passenger aircraft) A.L. Pukhov prepared a technical proposal for the conversion of the serial missile carrier-bomber Tu-22MZ into the administrative supersonic passenger aircraft Tu-344. They were offered several options for reworking the basic design of the Tu-22MZ. It was planned to place 10-12 and 24-30 passenger seats in the fuselage for business flights. The expected flight range of the Tu-344 in subsonic mode is 7,700 km.

The project of the supersonic administrative aircraft Tu-444 seems to be the most promising. This is, in fact, the SPS-2 concept on a reduced scale.

JSC Tupolev has created the appearance of the supersonic administrative aircraft Tu-444, which will be able to carry 6-10 passengers over a distance of 7500 km.

Airplane. The Tu-444 is made according to the “tailless” aerodynamic configuration with a low-mounted cantilever wing with developed root overhangs. The vertical tail is single-fin, all-moving.

On the serial Tu-444 it is planned to use the AL-32M afterburning turbojet engine from NPO Saturn.

The aircraft will be equipped full complex systems and means of life support for passengers and crew in flight and emergency rescue equipment.

There are great difficulties on the way to creating such an aircraft, the main of which are related to the environment. If the aircraft does not meet the requirements of the KAO for local noise, then the market for it will be extremely narrow. The fact is that in this case the plane will be allowed to fly at supersonic speed only over the ocean. Over land, a supersonic executive aircraft will be forced to fly at subsonic speeds, no different from modern business class aircraft.

Serial production of the Tu-444 will begin after the necessary funds have been found.

Aircraft designers believe that supersonic business jets have a bright future, even despite their high cost.

Undoubtedly, the implementation of this program will become a real link between the Tu-144 and promising supersonic civil aviation.

BASIC DATA OF SUPERSONIC ADMINISTRATIVE AIRCRAFT TU-444

Maximum take-off weight, kg 41,000

Empty weight, kg 19,300 Maximum payload, kg 1000

Maximum weight fuel, kg 20 500 Cruising speed:

Supersonic, km/h 2125

Subsonic, km/h 1050 Practical flight range

with fuel reserve, km 7500

Number of passengers, people 6-10 Crew (pilots + flight attendants), persons. 2+1

Number of engines 2

Engine starting thrust, kg 9700

Aircraft length, m 36

Wingspan, m 16.2

Wing area, m2 132

Aircraft height, m ​​6.51

Rowing length V P P, m 1830

On February 6, 1950, during another test, the Soviet jet fighter MiG-17 exceeded the speed of sound in horizontal flight, accelerating to almost 1070 km/h. This turned it into the first mass-produced supersonic aircraft. The developers Mikoyan and Gurevich were clearly proud of their brainchild.

For combat flights, the MiG-17 was considered transonic, since its cruising speed did not exceed 861 km/h. But this did not stop the fighter from becoming one of the most common in the world. IN different time it was in service with Germany, China, Korea, Poland, Pakistan and dozens of other countries. This monster even took part in the fighting in the Vietnam War.

The MiG-17 is far from the only representative of the supersonic aircraft genre. We will tell you about a dozen more airliners that also outpaced the sound wave and became famous throughout the world.

Bell X-1

The US Air Force specially equipped the Bell X-1 with a rocket engine because they wanted to use it to study the problems of supersonic flight. On October 14, 1947, the device accelerated to 1541 km/h (Mach number 1.26), overcame a given barrier and turned into a star in the sky. Today, the record-breaking model rests in the Smithsonian Museum in the States.

Source: NASA

North American X-15

The North American X-15 is also equipped with rocket engines. But, unlike its American counterpart Bell X-1, this aircraft reached a speed of 6167 km/h (Mach number 5.58), becoming the first and for 40 years the only manned hypersonic aircraft in human history (since 1959). who performed suborbital manned space flights. With its help, they even studied the reaction of the atmosphere to the entry of winged bodies into it. A total of three units of X-15 type rocket planes were produced.


Source: NASA

Lockheed SR-71 Blackbird

It would be a sin not to use supersonic aircraft for military purposes. Therefore, the US Air Force designed the Lockheed SR-71 Blackbird, a strategic reconnaissance aircraft with a maximum speed of 3,700 km/h (Mach number 3.5). The main advantages are fast acceleration and high maneuverability, which allowed it to evade missiles. The SR-71 was also the first aircraft to be equipped with radar signature reduction technologies.

Only 32 units were built, 12 of which crashed. In 1998 it was withdrawn from service.


Source: af.mil

MiG-25

We cannot help but recall the domestic MiG-25 - a 3rd generation supersonic high-altitude fighter-interceptor with a maximum speed of 3000 km/h (Mach number 2.83). The plane was so cool that even the Japanese coveted it. Therefore, on September 6, 1976, Soviet pilot Viktor Belenko had to hijack a MiG-25. After this, for many years in many parts of the Union, aircraft began to be incompletely refueled. The goal is to prevent them from flying to the nearest foreign airport.


Source: Alexey Beltyukov

MiG-31

Soviet scientists did not stop working for the aerial benefit of the fatherland. Therefore, in 1968, the design of the MiG-31 began. And on September 16, 1975, he was in the sky for the first time. This two-seat supersonic all-weather long-range fighter-interceptor accelerated to a speed of 2500 km/h (Mach number 2.35) and became the first Soviet fourth-generation combat aircraft.

The MiG-31 is designed to intercept and destroy air targets at extremely low, low, medium and high altitudes, day and night, in simple and adverse weather conditions, with active and passive radar interference, as well as false thermal targets. Four MiG-31s ​​can control airspace up to 900 kilometers long. This is not an airplane, but the pride of the Union, which is still in service with Russia and Kazakhstan.


Source: Vitaly Kuzmin

Lockheed/Boeing F-22 Raptor

The most expensive supersonic aircraft were built by the Americans. They modeled a fifth-generation multirole fighter, which became the most expensive among their colleagues. The Lockheed/Boeing F-22 Raptor is currently the only fifth-generation fighter in service and the first production fighter with a supersonic cruising speed of 1,890 km/h (Mach 1.78). Maximum speed 2570 km/h (Mach 2.42). No one has ever surpassed him in the air.


Source: af.mil

Su-100/T-4

The Su-100/T-4 (“weaving”) was developed as an aircraft carrier fighter. But the engineers of the Sukhoi Design Bureau managed not only to achieve their goal, but to model a cool strike and reconnaissance bomber-missile carrier, which they later even wanted to use as a passenger aircraft and booster for the Spiral aerospace system. The maximum speed of the T-4 is 3200 km/h (Mach 3).


On December 31, 1968, the world's first supersonic passenger aircraft, the Tu-144, made a test flight. Three years later, in the summer of 1971, he made an incredible impression on the organizers and guests of the International Aviation Exhibition in Paris. To demonstrate the capabilities of the “Soviet bird,” the developers sent the plane from Moscow at 9 a.m. and at the same time, at 9 a.m., it landed in the capital of Bulgaria.

Design of the supersonic aircraft Tu - 144.

Tu-144 is a Soviet supersonic aircraft developed by the Tupolev Design Bureau in the 1960s. Along with Concorde, it is one of only two supersonic airliners ever used by airlines for commercial travel.
In the 60s, projects to create a passenger aircraft were actively discussed in aviation circles in the USA, Great Britain, France and the USSR. supersonic aircraft with a maximum speed of 2500-3000 km/h, a flight range of at least 6-8 thousand km. In November 1962, France and Great Britain signed an agreement on the joint development and construction of Concorde (Concord).

Creators of a supersonic aircraft.

In the Soviet Union, the design bureau of academician Andrei Tupolev was involved in the creation of a supersonic aircraft. At a preliminary meeting of the Design Bureau in January 1963, Tupolev stated:
“Reflecting on the future of air transportation of people from one continent to another, you come to a clear conclusion: supersonic airliners are undoubtedly needed, and I have no doubt that they will come into practice...”
The academician's son, Alexey Tupolev, was appointed as the lead designer of the project. More than a thousand specialists from other organizations worked closely with his design bureau. The creation was preceded by extensive theoretical and experimental work, which included numerous tests in wind tunnels and natural conditions during analogue flights.

Concorde and Tu-144.

The developers had to rack their brains to find the optimal design for the machine. The speed of the designed airliner is fundamentally important - 2500 or 3000 km/h. The Americans, having learned that the Concorde is designed for 2500 km/h, announced that just six months later they would release their passenger Boeing 2707, made of steel and titanium. Only these materials could withstand the heating of the structure when in contact with air flow at speeds of 3000 km/h and above without destructive consequences. However, solid steel and titanium structures still have to undergo serious technological and operational testing. This will take a lot of time, and Tupolev decides to build a supersonic aircraft from duralumin, designed for a speed of 2500 km/h. The American Boeing project was subsequently completely closed.
In June 1965, the model was shown at the annual Paris Air Show. Concorde and Tu-144 turned out to be strikingly similar to each other. Soviet designers said - nothing surprising: the general shape is determined by the laws of aerodynamics and the requirements for a certain type of machine.

Supersonic aircraft wing shape.

But what should the wing shape be? We settled on a thin delta wing with the front edge shaped like the letter “8”. The tailless design - inevitable with such a design of the load-bearing plane - made the supersonic airliner stable and well controllable in all flight modes. Four engines were located under the fuselage, closer to the axis. The fuel is placed in caisson wing tanks. The trim tanks, located in the rear fuselage and wing swells, are designed to change the position of the center of gravity during the transition from subsonic to supersonic flight speeds. The nose was made sharp and smooth. But how can pilots have forward visibility in this case? They found a solution - the “bowing nose.” The fuselage had a circular cross-section and had a cockpit nose cone that tilted downward at an angle of 12 degrees during takeoff and 17 degrees during landing.

A supersonic plane takes to the sky.

The first supersonic aircraft took to the skies on the last day of 1968. The car was flown by test pilot E. Elyan. As a passenger aircraft, it was the first in the world to overcome the speed of sound in early June 1969, at an altitude of 11 kilometers. The supersonic aircraft reached the second speed of sound (2M) in mid-1970, at an altitude of 16.3 kilometers. The supersonic aircraft incorporates many design and technical innovations. Here I would like to note such a solution as the front horizontal tail. When using PGO, flight maneuverability was improved and speed was reduced during landing. The domestic supersonic aircraft could be operated from two dozen airports, while the French-English Concorde, having a high landing speed, could land only at a certified airport. The designers of the Tupolev Design Bureau did a colossal job. Take, for example, full-scale tests of a wing. They took place on a flying laboratory - the MiG-21I, modified specifically for testing the design and equipment of the wing of the future supersonic aircraft.

Development and modification.

Work on the development of the basic design of "044" went in two directions: the creation of a new economical afterburning turbojet engine of the RD-36-51 type and a significant improvement in the aerodynamics and design of the supersonic aircraft. The result of this was to meet the requirements for supersonic flight range. The decision of the commission of the USSR Council of Ministers on the version of the supersonic aircraft with the RD-36-51 was made in 1969. At the same time, at the proposal of the MAP - MGA, a decision is made, before the creation of the RD-36-51 and their installation on a supersonic aircraft, on the construction of six supersonic aircraft with the NK-144A with reduced specific fuel consumption. The design of serial supersonic aircraft with the NK-144A was supposed to be significantly modernized, significant changes in aerodynamics would be made, obtaining a Kmax of more than 8 in supersonic cruising mode. This modernization was supposed to ensure the fulfillment of the requirements of the first stage in terms of range (4000-4500 km), and in the future it was planned to transition to series on RD-36-51.

Construction of a modernized supersonic aircraft.

Construction of the pre-production modernized Tu-144 (“004”) began at MMZ “Experience” in 1968. According to calculated data with NK-144 engines (Cp = 2.01), the estimated supersonic range was supposed to be 3275 km, and with NK-144A ( Av = 1.91) exceed 3500 km. In order to improve the aerodynamic characteristics in cruising mode M = 2.2, the wing planform was changed (the sweep of the floating part along the leading edge was reduced to 76°, and the base one was increased to 57°), the shape of the wing became closer to the “Gothic” one. Compared to the “044”, the wing area increased, a more intense conical twist of the wing ends was introduced. However, the most important innovation in the aerodynamics of the wing was the change in the middle part of the wing, which ensured self-balancing in cruising mode with minimal loss of quality, taking into account the optimization of flight deformations of the wing in this mode, the length of the fuselage was increased to accommodate 150 passengers, the shape of the nose was improved, which also had a positive effect on the aerodynamics.

Unlike "044", each pair of engines in paired engine nacelles with air intakes was moved apart, freeing the lower part of the fuselage from them, unloading it from increased temperature and vibration loads, while changing the lower surface of the wing in the place of the calculated area of ​​flow compression, increasing the gap between the lower surface wing and the upper surface of the air intake - all this made it possible to more intensively use the effect of compressing the flow at the entrance to the air intakes on the Kmax than was possible to achieve on the "044". The new layout of the engine nacelles required changes to the chassis: the main landing gear was placed under the engine nacelles, with them retracted inside between the air ducts of the engines, they switched to an eight-wheeled trolley, and the scheme for retracting the nose landing gear also changed. An important difference between “004” and “044” was the introduction of a front multi-section destabilizer wing retractable in flight, which extended from the fuselage during takeoff and landing modes, and made it possible to ensure the required balancing when the elevons-flaps were deflected. Design improvements, an increase in payload and fuel reserves led to an increase in take-off weight, which exceeded 190 tons (for "044" - 150 tons).

Pre-production Tu-144.

Construction of pre-production supersonic aircraft No. 01-1 (tail No. 77101) was completed at the beginning of 1971, and made its first flight on June 1, 1971. According to the factory test program, the vehicle completed 231 flights, lasting 338 hours, of which 55 hours flew at supersonic speed. On this machine, complex issues of interaction of the power plant in various flight modes were worked out. On September 20, 1972, the car flew along the Moscow-Tashkent highway, while the route was covered in 1 hour 50 minutes, the cruising speed during the flight reached 2500 km/h. The pre-production vehicle became the basis for the deployment of serial production at the Voronezh Aviation Plant (VAZ), which, by decision of the government, was entrusted with the development of a supersonic aircraft in a series.

First flight of the production Tu-144.

The first flight of serial supersonic aircraft No. 01-2 (tail No. 77102) with NK-144A engines took place on March 20, 1972. In the series, based on the results of tests of the pre-production vehicle, the aerodynamics of the wing were adjusted and its area was once again slightly increased. The take-off weight in the series reached 195 tons. By the time of operational testing of production vehicles, the specific fuel consumption of the NK-144A was intended to be increased to 1.65-1.67 kg/kgf/hour by optimizing the engine nozzle, and subsequently to 1.57 kg/kgf/hour, while the flight range should was increased to 3855-4250 km and 4550 km, respectively. In reality, they were able to achieve by 1977, during testing and development of the Tu-144 and NK-144A series, Average = 1.81 kg/kgf hour in cruising supersonic thrust mode 5000 kgf, Average = 1.65 kg/kgf hour in takeoff afterburner thrust mode 20000 kgf, Av = 0.92 kg/kgf hour in the cruising subsonic mode of thrust 3000 kgf and in the maximum afterburning mode in the transonic mode we received 11800 kgf. A fragment of a supersonic aircraft.

First stage of testing.

In a short period of time, in strict accordance with the program, 395 flights were completed with a total flight time of 739 hours, including more than 430 hours in supersonic modes.

Second stage of testing.

At the second stage of operational testing, in accordance with the joint order of the ministers of aviation industry and civil aviation dated September 13, 1977 No. 149-223, there was a more active connection of civil aviation facilities and services. A new testing commission was formed, headed by Deputy Minister of Civil Aviation B.D. Rude. By decision of the commission, then confirmed by a joint order dated September 30 - October 5, 1977, crews were appointed to conduct operational tests:
First crew: pilots B.F. Kuznetsov (Moscow State Transport Administration), S.T. Agapov (ZhLIiDB), navigator S.P. Khramov (MTU GA), flight engineers Yu.N. Avaev (MTU GA), Yu.T. Seliverstov (ZhLIiDB), leading engineer S.P. Avakimov (ZhLIiDB).
Second crew: pilots V.P. Voronin (MSU GA), I.K. Vedernikov (ZhLIiDB), navigator A.A. Senyuk (MTU GA), flight engineers E.A. Trebuntsov (MTU GA) and V.V. Solomatin (ZhLIiDB), leading engineer V.V. Isaev (GosNIIGA).
Third crew: pilots M.S. Kuznetsov (GosNIIGA), G.V. Voronchenko (ZhLIiDB), navigator V.V. Vyazigin (GosNIIGA), flight engineers M.P. Isaev (MTU GA), V.V. Solomatin (ZhLIiDB), leading engineer V.N. Poklad (ZhLIiDB).
Fourth crew: pilots N.I. Yurskov (GosNIIGA), V.A. Sevankaev (ZhLIiDB), navigator Yu.A. Vasiliev (GosNIIGA), flight engineer V.L. Venediktov (GosNIIGA), leading engineer I.S. Mayboroda (GosNIIGA).

Before the start of testing, a lot of work was done to review all the materials received in order to use them “for credit” for meeting specific requirements. However, despite this, some civil aviation specialists insisted on implementing the “Operational Test Program for Supersonic Aircraft,” developed at GosNIIGA back in 1975 under the leadership of leading engineer A.M. Teteryukov. This program essentially required the repetition of previously completed flights in the amount of 750 flights (1200 flight hours) on MGA routes.
The total volume of operational flights and tests for both stages will be 445 flights with 835 flight hours, of which 475 hours are in supersonic modes. 128 paired flights were performed on the Moscow-Alma-Ata route.

The final stage.

The final stage of testing was not stressful from a technical point of view. Rhythmic work according to schedule was ensured without serious failures or major defects. The engineering and technical crews “had fun” by assessing household equipment in preparation for passenger transportation. Flight attendants and relevant specialists from GosNIIGA, who were involved in the tests, began to conduct ground training to develop the technology for servicing passengers in flight. The so-called “pranks” and two technical flights with passengers. The “raffle” was held on October 16, 1977 with a complete simulation of the cycle of ticket check-in, baggage check-in, passenger boarding, flight of actual duration, passenger disembarkation, baggage check-in at the destination airport. There was no end to the “passengers” (the best workers of OKB, ZhLIiDB, GosNIIGA and other organizations). The diet during the “flight” was at the highest level, since it was based on the first class menu, everyone enjoyed it very much. The “draw” made it possible to clarify many important elements and details of passenger service. On October 20 and 21, 1977, two technical flights were carried out along the Moscow-Alma-Ata highway with passengers. The first passengers were employees of many organizations that were directly involved in the creation and testing of the supersonic aircraft. Today it is even difficult to imagine the atmosphere on board: there was a feeling of joy and pride, great hope for development against the backdrop of first-class service, to which technical people are absolutely not accustomed. On the first flights, all the heads of the parent institutes and organizations were on board.

The road is open for passenger traffic.

The technical flights went off without any serious problems and showed that the supersonic aircraft and all ground services were fully prepared for regular transportation. On October 25, 1977, the Minister of Civil Aviation of the USSR B.P. Bugaev and the Minister of Aviation Industry of the USSR V.A. Kazakov approved the main document: “Act on the results of operational tests of a supersonic aircraft with NK-144 engines” with a positive conclusion and conclusions.
Based on the presented tables of compliance of the Tu-144 with the requirements of the Temporary Airworthiness Standards for Civilian Tu-144 of the USSR, the full volume of submitted evidentiary documentation, including acts on state and operational tests, on October 29, 1977, Chairman of the State Aviation Register of the USSR I.K. Mulkijanov approved the conclusion and signed the first airworthiness certificate in the USSR, type No. 03-144, for a supersonic aircraft with NK-144A engines.
The road was open for passenger traffic.

The road was open for passenger traffic.
The supersonic aircraft could land and take off at 18 airports in the USSR, while Concorde, whose takeoff and landing speed was 15% higher, required a separate landing certificate for each airport.

The second production copy of a supersonic aircraft.

In June 1973, the 30th International Paris Air Show took place in France. The interest generated by the Soviet Tu-144 airliner, the world's first supersonic aircraft, was enormous. On June 2, thousands of visitors to the air show in the Paris suburb of Le Bourget watched the second production copy of a supersonic aircraft take to the runway. The roar of four engines, a powerful take-off - and now the car is in the air. The sharp nose of the airliner straightened and aimed at the sky. The supersonic Tu, led by Captain Kozlov, made its first demonstration flight over Paris: having gained the required altitude, the car went beyond the horizon, then returned and circled over the airfield. The flight proceeded normally, no technical problems were noted.
The next day, the Soviet crew decided to show everything that the new one was capable of.

Disaster during a demonstration.

The sunny morning of June 3 did not seem to foretell trouble. At first everything went according to plan - the audience raised their heads and applauded in unison. The supersonic aircraft, showing the “top class”, began to descend. At that moment, a French Mirage fighter appeared in the air (as it later turned out, it was filming an air show). A collision seemed inevitable. In order not to crash into the airfield and spectators, the crew commander decided to rise higher and pulled the steering wheel towards himself. However, the height had already been lost, creating large loads on the structure; As a result, the right wing cracked and fell off. A fire started there, and a few seconds later the flaming supersonic plane rushed to the ground. A terrible landing occurred on one of the streets of the Parisian suburb of Goussainville. The giant machine, destroying everything in its path, crashed to the ground and exploded. The entire crew - six people - and eight Frenchmen on the ground were killed. Goosenville also suffered - several buildings were destroyed. What led to the tragedy? According to most experts, the cause of the disaster was the attempt of the crew of a supersonic aircraft to avoid a collision with the Mirage. During landing, the Tu was caught in a wake from the French Mirage fighter.

The photograph contains the signature of the first cosmonaut who landed on the moon, Neil Armstrong, pilot cosmonaut Georgiy Timofeevich Beregovoy and all the dead crew members. Supersonic aircraft No. 77102 crashed during a demonstration flight at the Le Bourget air show. All 6 crew members (Honored Test Pilot Hero of the Soviet Union M.V. Kozlov, Test Pilot V.M. Molchanov, Navigator G.N. Bazhenov, Deputy Chief Designer, Engineer Major General V.N. Benderov, Leading Engineer B.A. Pervukhin and flight engineer A.I. Dralin) died.

According to the employees of the A.N. Tupolev Design Bureau, the cause of the disaster was the connection of an undebugged analog block of the control system, which led to a destructive overload.
According to the pilots, emergency situations occurred on almost every flight. On May 23, 1978, the second supersonic plane crashed. An improved experimental version of the airliner, Tu-144D (No. 77111), after a fuel fire in the engine nacelle area of ​​the 3rd power plant due to the destruction of the fuel line, smoke in the cabin and the crew turning off two engines, made an emergency landing on a field near the village of Ilyinsky Pogost, not far from the city Yegoryevsk.
After landing, crew commander V.D. Popov, co-pilot E.V. Elyan and navigator V.V. Vyazigin left the plane through the cockpit window. Engineers V.M. Kulesh, V.A. Isaev, V.N. Stolpovsky, who were in the cabin, left the aircraft through the front entrance door. Flight engineers O. A. Nikolaev and V. L. Venediktov found themselves trapped in their workplace by structures that were deformed during landing and died. (The deflected nose cone touched the ground first, worked like a bulldozer blade, picking up soil, and rotated under its belly, entering the fuselage.) On June 1, 1978, Aeroflot stopped supersonic passenger flights forever.

Improving supersonic aircraft.

Work on improving the supersonic aircraft continued for several more years. Five production aircraft were produced; another five were under construction. A new modification has been developed - Tu-144D (long-range). However, the choice of a new engine (more economical), RD-36-51, required significant redevelopment of the aircraft, especially power plant. Serious design gaps in this area led to a delay in the release of the new airliner. Only in November 1974, the serial Tu-144D (tail number 77105) took off, and nine (!) years after its first flight, on November 1, 1977, the supersonic aircraft received a certificate of airworthiness. Passenger flights opened on the same day. During their short operation, the liners carried 3,194 passengers. On May 31, 1978, flights were stopped: a fire broke out on one of the production Tu-144Ds, and the airliner suffered a disaster, crashing during an emergency landing.
The disasters in Paris and Yegoryevsk led to the fact that interest in the project on the part of the state decreased. From 1977 to 1978, 600 problems were identified. As a result, already in the 80s, it was decided to remove the supersonic aircraft, explaining this with “a bad effect on people’s health when crossing the sound barrier.” Nevertheless, four out of five Tu-144Ds in production were still completed. Subsequently, they were based in Zhukovsky and took to the air as flying laboratories. A total of 16 supersonic aircraft were built (including long-range modifications), which made a total of 2,556 sorties. By the mid-90s, ten of them had survived: four in museums (Monino, Kazan, Kuibyshev, Ulyanovsk); one remained at the plant in Voronezh, where it was built; another one was in Zhukovsky along with four Tu-144Ds.

Subsequently, the Tu-144D was used only for cargo transportation between Moscow and Khabarovsk. In total, the supersonic aircraft made 102 flights under the Aeroflot flag, of which 55 were passenger flights (3,194 passengers were carried).
Later, supersonic aircraft made only test flights and a few flights to set world records.
The Tu-144LL was equipped with NK-32 engines due to the lack of serviceable NK-144 or RD-36-51, similar to those used on the Tu-160, various sensors and test monitoring and recording equipment.
A total of 16 Tu-144 airliners were built, which made a total of 2,556 sorties and flew 4,110 hours (among them, aircraft 77144 flew the most, 432 hours). The construction of four more airliners was never completed.

Throughout history, man has been drawn to overcome all possible barriers. One of them has long been the speed of sound. On this moment there are many supersonic aircraft, some of which are actively used various states, while others, for one reason or another, no longer take to the skies.

In the course of development, which was carried out over many decades, not only supersonic fighters for military purposes were designed, but also civilian airliners, some of which carried passengers.

The development of aircraft capable of exceeding it began in the middle of the last century. This happened during the Second World War, when German scientists were hard at work trying to develop a supersonic aircraft that could turn the tide of the war.

However, the war ended, and many German scientists who worked on these developments were captured by the Americans. Largely thanks to them, the USA developed an aircraft with rocket engines - the Bell X-1, on which in 1947 Chuck Yeager was the first in the world to exceed the speed of sound.

A year later I came to a similar result Soviet Union, having developed the LA-176, which first equaled the speed of sound at an altitude of 9000 meters, and a month later, having received improved engines, exceeded it at an altitude of 7000 meters.

Unfortunately, the project was closed due to tragic death O.V. Sokolovsky, one of the pilots of this plane. Further progress in the design of supersonic aircraft slowed down due to some physical obstacles: air liquefaction at too high a speed, changes in aerodynamics and streamlining. A serious obstacle was the overheating of aircraft breaking the sound barrier. This phenomenon is called "flutter".

Over the next few years, designers worked on streamlining, aerodynamics, body materials and other improvements.

Military aviation in the 1950s

At the beginning of this decade, the F-100 Super Saber and MiG-19 were developed by the USA and USSR, competing in all spheres. At first, the American F-100 overtook the Soviet Mig, reaching a speed of 1,215 kilometers per hour in 1953, but a year later the Soviet MiG was able to get ahead of it, accelerating to 1,450 kilometers per hour.

Despite the absence of open military clashes between the USA and the USSR, in the local conflicts of the Vietnam and Korean wars it was established that the Soviet MiG was in many ways superior to its American competitor.

The MiG-19 was lighter, took to the air faster, surpassed its competitor in dynamic characteristics, as well as its radius combat use 200 kilometers higher than the F-100.

Such circumstances led to increased interest in Soviet developments on the part of the Americans, and after the end of the Korean War, officer No Geum Seok stole a MiG-19 from a Soviet airbase, providing it to the United States, for which he received a reward of $100,000.

Civil supersonic aviation

The technical developments obtained during the wars gave impetus to the rapid development of aviation in the 60s. The main problems caused by breaking the sound barrier were solved, and designers were able to begin designing the first supersonic civil aircraft.

Flight of the first supersonic airliner, intended for the transport of passengers, was completed in 1961. This aircraft was a Douglas DC-8, piloted without passengers, with ballast placed on board to simulate their weight for testing in conditions as close to real as possible. At the time of descent from a height of 15877, the speed was 1262 km/h.

Also, the speed of sound was unplannedly exceeded by a Boeing 747 when the plane, en route from Taipei to Los Angeles, went into an uncontrolled dive as a result of malfunction and incompetence of the crew. Diving from an altitude of 125,000 meters to 2,900 meters, the plane exceeded the speed of sound, sustaining damage to the tail and causing serious injury to two passengers. The incident occurred in 1985.

In total, two aircraft were built that were capable of truly exceeding the speed of sound in regular flights. They were the Soviet Tu-144 and the Anglo-French Aérospatiale-BAC Concorde. Apart from these aircraft, no other passenger aircraft could not maintain supersonic cruising speed.

Tu-144 and Concorde

The Tu-144 is rightfully considered the first supersonic passenger aircraft in history, because it was built before the Concorde. These liners were distinguished not only by excellent specifications, but also elegant appearance– many consider them the most beautiful aircraft in the history of aviation.

Unfortunately, the Tu-144 became not only the first supersonic passenger aircraft to take to the skies, but also the first airliner of this type to crash. In 1973, 14 people died during a crash at Le Bourget, which served as the first impetus for the cessation of flights on this machine.

The second Tu-144 crash occurred in the Moscow region in 1978 - a fire broke out on the plane, causing the landing to be fatal for two crew members.

During the inspection, it was determined that the cause of the fire was a defect in the fuel system of the new engine, which was being tested at that time, but otherwise the aircraft showed excellent performance, as it was able to land when it caught fire. Despite this, commercial rail service on it was discontinued.

Concorde served European aviation much longer - flights on it lasted from 1976 to 2003. However, in 2000, this liner also crashed. While taking off from Charles De Gaulle, the plane caught fire and crashed to the ground, killing 113 people.

Throughout the history of flights, Concorde never began to pay off, and after the disaster, the flow of passengers decreased so much that the project became even more unprofitable, and three years later flights on this supersonic aircraft ceased.

Technical characteristics of Tu-144

Many people wonder what the speed of a supersonic aircraft was? Let's look at the technical characteristics of the aircraft, which has long been the pride of domestic aviation:

  • Crew – 4 people;
  • Capacity – 150 people;
  • The ratio of length and height is 67/12.5 meters;
  • Maximum weight – 180 tons;
  • Thrust with afterburner – 17500 kg/s;
  • Cruising speed -2200 km/h;
  • Maximum flight altitude – 18,000 meters;
  • Flight range – 6500 kilometers.

When might a new supersonic passenger plane take to the skies? Business jet based on the Tu-160 bomber: real? How to silently break the sound barrier?

Tu-160 - the largest and most powerful in history military aviation supersonic aircraft and aircraft with variable wing geometry. Among the pilots he received the nickname "White Swan". Photo: AP

Do supersonic passenger cars have a future? - I asked the outstanding Russian aircraft designer Genrikh Novozhilov not long ago.

Of course have. At least a supersonic business aircraft will definitely appear,” answered Genrikh Vasilievich. - I have had the opportunity to talk with American businessmen more than once. They clearly stated: “If such an aircraft appeared, Mr. Novozhilov, then no matter how expensive it was, they would instantly buy it from you.” Speed, altitude and range are three factors that are always relevant.

Yes, they are relevant. The dream of any businessman: to fly across the ocean in the morning, conclude a major deal, and return home in the evening. Modern aircraft They fly no faster than 900 km/h. A supersonic business jet will have a cruising speed of about 1900 km per hour. What prospects for the business world!

That is why neither Russia, nor America, nor Europe have ever given up attempts to create a new supersonic passenger car. But the history of those that have already flown - the Soviet Tu-144 and the Anglo-French Concorde - has taught us a lot.

This December it will be half a century since the Tu-144 made its first flight. And a year later, the liner showed exactly what it was capable of: it broke the sound barrier. He picked up a speed of 2.5 thousand km/h at an altitude of 11 km. This event went down in history. There are still no analogues of passenger aircraft in the world that are capable of repeating such a maneuver.

The One Hundred and Forty Four opened a fundamentally new page in the global aircraft industry. They say that at one of the meetings at the CPSU Central Committee, designer Andrei Tupolev reported to Khrushchev: the car is turning out to be quite voracious. But he just waved his hand: your job is to wipe the noses of the capitalists, but we have enough kerosene...

The nose was wiped. They filled themselves with kerosene.

However, the European competitor, which took off later, was also not distinguished by its efficiency. Thus, in 1978, nine Concordes brought their companies about $60 million in losses. And only government subsidies saved the situation. Nevertheless, the “Anglo-French” flew until November 2003. But the Tu-144 was written off much earlier. Why?

First of all, Khrushchev’s optimism did not come true: an energy crisis broke out in the world and kerosene prices went up. The supersonic first-born was immediately dubbed “a boa constrictor around Aeroflot’s neck.” The enormous fuel consumption also knocked out the designed flight range: the Tu-144 did not reach either Khabarovsk or Petropavlovsk-Kamchatsky. Only from Moscow to Alma-Ata.

And if only that. A 200-ton “iron”, cruising over densely populated areas at supersonic speed, literally blew up the entire space along the route. Complaints poured in: cow milk yields fell, chickens stopped laying eggs, acid rain crushed them... Today you can’t say for sure where the truth is and where the lies are. But the fact remains: Concorde flew only over the ocean.

Finally, the most important thing is disasters. One - in June 1973 at the air show in Paris Le Bourget, as they say, in full view of the whole planet: the crew of test pilot Kozlov wanted to demonstrate the capabilities of the Soviet airliner... The other - five years later. Then a test flight was carried out with engines of a new series: they were just supposed to pull the plane to the required range.

Concorde also did not escape tragedy: the plane crashed in July 2000 while taking off from Charles de Gaulle airport. Ironically, it crashed almost where the Tu-144 once did. 109 people on board and four on the ground were killed. Regular passenger services resumed only a year later. But a series of incidents followed, and this supersonic aircraft was also put to rest.

On December 31, 1968, the first flight of the Tu-144 took place, two months earlier than the Concorde. And on June 5, 1969, at an altitude of 11,000 meters, our plane was the first in the world to break the sound barrier. Photo: Sergey Mikheev/ RG

Today, at a new stage in technology development, scientists need to find a balance between contradictory factors: good aerodynamics of a new supersonic aircraft, low fuel consumption, as well as strict restrictions on noise and sonic boom.

How realistic is it to create a new passenger supersonic aircraft based on the Tu-160 bomber? From a purely engineering point of view, it’s quite possible, experts say. And in history there are examples when military aircraft successfully “removed their shoulder straps” and flew “to civilian life”: for example, the Tu-104 was created on the basis of the Tu-16 long-range bomber, and the Tu-114 was based on the Tu-95 bomber. In both cases, it was necessary to redo the fuselage - change the wing layout, expand the diameter. In fact, these were new aircraft, and quite successful ones. By the way, an interesting detail: when the Tu-114 first flew to New York, there was neither a ramp nor a tractor suitable in height at the stunned airport...

At a minimum, similar work will be required for the conversion of the Tu-160. However, how cost effective will this solution be? Everything needs to be carefully assessed.

How many such planes do you need? Who will fly them and where? How commercially available will they be for passengers? How soon will the development costs pay off?.. Tickets on the same Tu-144 cost 1.5 times more than usual, but even such a high cost did not cover operating costs.

Meanwhile, according to experts, the first Russian supersonic administrative aircraft (business jet) can be designed in seven to eight years if the engine reserves are available. Such an aircraft can accommodate up to 50 people. The total demand in the domestic market is projected at 20-30 cars at a price of 100-120 million dollars.

A new generation of serial supersonic passenger aircraft may appear around 2030

Designers on both sides of the ocean are working on supersonic business jet projects. Everyone is looking for new layout solutions. Some offer an atypical tail, some a completely unusual wing, some a fuselage with a curved central axis...

TsAGI specialists are developing the SDS/SPS project ("supersonic business aircraft / supersonic passenger aircraft"): according to the plan, it will be able to perform transatlantic flights over a distance of up to 8600 km with a cruising speed of at least 1900 km/h. Moreover, the cabin will be transformable - from 80-seat to 20-seat VIP class.

A last summer At the air show in Zhukovsky, one of the most interesting was the model of a high-speed civil aircraft created by TsAGI scientists as part of the international project HEXAFLY-INT. This aircraft must fly at a speed of more than 7-8 thousand km/h, corresponding to Mach 7 or 8.

But for a high-speed civil aircraft to become a reality, a huge range of problems must be solved. They are related to materials, the hydrogen power plant, its integration with the airframe and obtaining high aerodynamic efficiency of the aircraft itself.

And what is absolutely certain: design features the designed winged aircraft will be clearly non-standard.

Competently

Sergey Chernyshev, CEO TsAGI, academician of the Russian Academy of Sciences:

The level of sonic boom (a sharp pressure drop in the shock wave) from the Tu-144 was 100-130 pascals. But modern research showed: it can be increased to 15-20. Moreover, reduce the volume of the sonic boom to 65 decibels, which is equivalent to noise big city. There are still no official standards in the world on the permissible level of sonic boom. And most likely it will be determined no earlier than 2022.

We have already proposed the appearance of a demonstrator of a supersonic civil aircraft of the future. The sample must demonstrate the ability to reduce sonic boom in supersonic cruise flight and noise in the airport area. Several options are being considered: an aircraft for 12-16 passengers, also for 60-80. There is an option for a very small business jet - for 6-8 passengers. These are different weights. In one case, the car will weigh approximately 50 tons, and in another - 100-120, etc. But we start with the first of the designated supersonic aircraft.

According to various estimates, today there is already an unrealized need for fast flights on the market. business people on airplanes with a passenger capacity of 12-16 people. And, of course, the car must fly a distance of at least 7-8 thousand kilometers along transatlantic routes. The cruising speed will be Mach 1.8-2, that is, approximately twice the speed of sound. This speed is a technological barrier to the use of conventional aluminum materials in airframe construction. Therefore, the dream of scientists is to make an airplane entirely from temperature-controlled composites. And there are good developments.

Clear requirements for the aircraft must be determined by the launch customer, and then at the stages of preliminary design and development work, some changes in the original appearance of the aircraft obtained at the preliminary design stage are possible. But the sound principles for reducing sonic boom will remain unchanged.

The short passenger operation of the supersonic Tu-144 was limited to flights from Moscow to Alma-Ata. Photo: Boris Korzin/ TASS Photo Chronicle

I think we are 10-15 years away from a flying prototype. In the near future, according to our plans, a flying demonstrator should appear, the appearance of which is being worked out. Its main objective is to demonstrate the basic technologies for creating a supersonic aircraft with a low sonic boom level. This is a necessary stage of work. A new generation serial supersonic aircraft may appear on the horizon in 2030.

Oleg Smirnov, Honored Pilot of the USSR, Chairman of the Civil Aviation Commission Public Council Rostransnadzor:

Make a passenger supersonic aircraft based on the Tu-160? For our engineers - absolutely real. No problem. Moreover, this car is very good, with remarkable aerodynamic qualities, a good wing and fuselage. However, today any passenger aircraft must first of all meet international airworthiness and technical requirements. The discrepancies, when comparing a bomber and a passenger plane, are more than 50 percent. For example, when some people say that when remodeling it is necessary to “inflate the fuselage,” you need to understand: the Tu-160 itself weighs more than 100 tons. “Inflate” means adding weight. This means increasing fuel consumption, reducing speed and altitude, and making the aircraft absolutely unattractive for any airline in terms of its operating costs.

To create a supersonic aircraft for business aviation, we need new avionics, new aircraft engines, new materials, and new types of fuel. On the Tu-144, kerosene, as they say, flowed like a river. Today this is impossible. And most importantly, there must be mass demand for such an aircraft. One or two cars ordered from millionaires will not solve the financial problem. Airlines will have to lease it and “work off” the cost. On whom? Naturally, on the passengers. From an economic point of view, the project will be a failure.

Sergey Melnichenko, General Director of ICAA "Flight Safety":

Over the almost 35 years that have passed since the start of serial production of the Tu-160, technology has advanced, and this will have to be taken into account when thoroughly modernizing the existing aircraft. Aircraft manufacturers say it is much easier and cheaper to create a new aircraft in accordance with new concept than rebuilding the old one.

Another question: if the Tu-160 is rebuilt specifically as a business jet, will they still be interested in it? Arab sheikhs? However, there are a few "buts". The aircraft will need to obtain an international certificate (and the European Union and the USA are behind its issuance), which is very problematic. In addition, we will need new efficient engines, which we do not have. Those that are available do not consume fuel, but drink.

If the plane is converted to carry economy passengers (which is unlikely), then the question is - where to fly and who to carry? Last year we only just approached the figure of 100 million passengers carried. In the USSR these figures were much higher. The number of airfields has decreased several times. Not everyone who would like to fly to the European part of the country from Kamchatka and Primorye can afford it. Tickets for a “fuel-guzzling plane” will be more expensive than for Boeings and Airbuses.

If the plane is planned to be rebuilt purely for the interests of the heads of large companies, then this will most likely be the case. But then this question concerns them purely, and not the Russian economy and people. Although in this case it is difficult to imagine that flights will be carried out only to Siberia or to Far East. Problem with area noise. And if the updated plane is not allowed to fly to Sardinia, then who needs it?